Ormesby Village Infant and Junior School

Calculation Policy

Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as'.

\begin{tabular}{|c|c|c|}
\hline Regrouping to make 10; using ten frames and counters/cubes or using Numicon.
\[
6+5
\]

\begin{tabular}{|l|l|l|}
\hline \& \& 1 \\
\hline \& \\
\hline \& \& 0 \\
\hline \& \& \\
\hline
\end{tabular} \& Children to draw the ten frame and counters/cubes. \& Children to develop an understanding of equality e.g.
\[
\begin{aligned}
\& 6+\square=11 \\
\& 6+5=5+\square \\
\& 6+5=\square+4
\end{aligned}
\] \\
\hline TO + O using base 10 . Continue to develop understanding of partitioning and place value.
\[
41+8
\] \& Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. \& \(41+8\)

$$
\begin{aligned}
& \begin{array}{l}
1+8=9 \\
40+9=49
\end{array} \\
& +\begin{array}{r}
41 \\
+48
\end{array} \\
& \hline 49
\end{aligned}
$$

\hline TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$ \& Chidren to represent the base 10 in a place value chart. \& Looking for ways to make 10.

\hline
\end{tabular}

Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames
14-5

Column method using base 10.
48-7

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

00000000 $00000 \longleftarrow ?$

$8-5$, the difference is

Children to explore why
$9-6=8-5=7-4$ have the same difference.

Children to show how they can make 10 by partitioning the subtrahend.

$14-4=10$
$10-1=9$

Children to represent the base 10 pictorially.

Column method or children could count back 7 .

Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 $4+4+4$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model. $88 \quad 8888$	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Number lines to show repeated groups3×4	Represent this pictorially alongside a number line e.g:	Abstract number line showing three jumps of four. $3 \times 4=12$
	$\prod_{0}^{00001_{4} 0000_{8}^{10000}} 12$	
Cuisenaire rods can be used too.		

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. $\begin{array}{rr} 10 \times 4 & =40 \\ 5 \times 4 & =20 \\ 40+20 & =60 \end{array}$ A number line can also be used
Using Base 10 to make arrays to multiply tens and ones by a single digit e.g. Three rows each with 23 chairs, how many chairs altogether?	Partitioning an array when multiplying larger numbers by a single digit.	Grid method:7x13-x 10 3 7 70 21$70+21=91$ Progressing to the formal column method: $\begin{array}{r} \begin{array}{r} 13 \\ \times \quad 7 \end{array} \\ \hline \begin{array}{c} 21(7 \times 3) \\ +\quad 70(7 \times 10) \end{array} \quad \square \end{array} \begin{array}{r} 13 \\ 91 \end{array} \quad \begin{gathered} 91 \\ \hline \end{gathered}$

Division

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. $6 \div 2$	Represent the sharing pictorially.	$6 \div 2=3$ Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using a beadstring on a number line.	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.

Long division using place value counters (these can be found on MathsBot.com).

$2544 \div 12$

1000s	100s	10s	15
\bigcirc	θ^{0000}	0000	0000
1000s	100s	10s	Is
		-000	णరणర

We can't group 2 thousands into groups of 12 so will exchange them.

1000s	100s	10s	Is
			-రరల

After exchanging the hundred, we have 14 tens. We can group 12 tens $\begin{array}{r}\begin{array}{r}021 \\ 12 \begin{array}{r}2544 \\ 24 \\ \hline 14 \\ \hline 2\end{array}\end{array}+\frac{12}{} \\ \hline\end{array}$

1000s	100s	10s	Is
		8806	

Repeated subtraction can also be used. Children to use their knowledge of multiples to help with this.

Conceptual variation: different ways to ask children to solve 615:5

| Using the part whole model below, how |
| :--- | :--- |
| can you divide 615 by 5 without using |
| short division? | | I have £615 and share it equally |
| :--- |
| between 5 bank accounts. How much |
| will be in each account? |
| 615 pupils need to be put into 5 |
| groups. How many will be in each |
| group? |

