Ormesby Village Infant and Junior School

Calculation Policy

Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to', 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4+3=7 Four is a part, 3 is a part and the whole is seven.
		
Counting on using number lines using cubes or Numicon.	A number line which encourages children to count on rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4+2

Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 - 3 = 1	XXX XXX	4 3 ? 4 ? 3
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track an show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10	12345678910	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 – 5, the difference is \square Children to explore why 9 - 6 = 8 – 5 = 7 – 4 have the same difference.
Making 10 using ten frames. 14 - 5 -4 $-1-4$ -1	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. 14 - 5 = 9 $4 - 1$ $14 - 4 = 10$ $10 - 1 = 9$
Column method using base 10. 48-7 10s 1s 48-7 4 1	Children to represent the base 10 pictorially.	Column method or children could count back 7. 4 8 - 7 4 1

Column method using base 10 and having to exchange. 41 – 26

Represent the base 10 pictorially, remembering to show the exchange.

Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because 41 = 30 + 11.

Column method using Base 10 for exchanging as above. e.g. 234-88:

- 1. Make the numbers using Base 10 in a place value grid.
- 2. Exchange a ten for 10 ones.
- 3. Take 8 ones from the ones column to leave 6.
- 4. Exchange a hundred for 10 tens.
- 5. Take 8 tens from the tens column to leave 4.
- 6. One hundred will remain in the hundreds column.

Represent the place value counters pictorially; remembering to show what has been exchanged.

Expanded column method.		
Children must	understand	what is
happening when the cross out digits:		
100	120	
200	30	<mark>1</mark> 4
-	80	8

40

6

Formal column method:

100

1	12	1	
2	'S.	4	
-	8	8	
1	4	6	

Conceptual variation; different ways to ask children to solve 391-186

(391)	Raj spent £391, Timmy spent £186. How much more did Raj spend?	= 391 - 186	Missing digit calculations
X	Calculate the difference between 391 ar	391	3 9
() (186)	186.	<u>-186</u>	- 6
<u> </u>		What is 186 less than 391?	0 5

Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group. ()	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used
Using Base 10 to make arrays to multiply tens and ones by a single digit e.g. Three rows each with 23 chairs, how many chairs altogether?	Partitioning an array when multiplying larger numbers by a single digit. 7 $\begin{pmatrix} 7 \times 13 = 91 \\ 10 & 3 \\ 10 & 3 \\ 10 & 7 \\ $	Grid method: 7x13- $\frac{X}{7}$ 10 3 7 70 21 70+21=91 Progressing to the formal column method: 13 13 $\frac{X}{7}$ 21 (7x3) \longrightarrow $\frac{X}{7}$ 91 + 70 (7x10) 91 X

			Multiplying by a teens number using grid e.g. 23x14: $\begin{array}{r} x & 20 & 3 \\ \hline 10 & 200 & 30 \\ \hline 4 & 80 & 12 \end{array} = \begin{array}{r} 230 \\ + & 92 \\ \hline 322 \end{array}$
When children start to multiply 3d × 3d a To get 744 children have solved 6 × 124. To get 2480 they have solved 20 × 124.	nd 4d × 2d etc., they should be confident	with the abstract:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Conceptual v	ariation; different wa	ys to ask children	to solve 6x23
23 23 23 23 23 23 ?	Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week? With the counters, prove that 6 x 23 = 138	Find the product of 6 and 23 $6 \times 23 =$ 6×23 6×23 6×23 $\times 23 \times 6$ 	Interview Interview

<u>Division</u>

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	6 ÷ 2 = 3 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using a beadstring on a number line.	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted. $ \frac{-2}{0} + \frac{-2}{3} + \frac{-2}{4} + \frac{-2}{5} + \frac{-2}{5} + \frac{-2}{3} + \frac{-2}{5} + \frac{-2}{$

Two digit divided by one digit, no remainder, using a beadstring and a number line. 12 ÷ 4:	Children to represent the beadstring pictorially.	12 ÷ 4 = 3 Children should be encouraged to use their times table facts; they could also represent repeated addition or subtraction on a number line.
Two digit divided by one digit with a remainder, using a beadstring and a number line. 13 ÷ 4:	Children to represent the beadstring pictorially.	13 ÷ 4 = 3 remainder 1: Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' 4 + 4 = 3 remainder a s a decimal and a fraction.

<complex-block></complex-block>	Children to represent the Base 10 pictorially.	Children to be able to make sense of the Base 10 and write calculations to show the process. $42 \div 3$ 42 = 30 + 12 $30 \div 3 = 10$ $12 \div 3 = 4$ 10 + 4 = 14
Short division using Base 10 to group. 615÷5	Represent the place value counters pictorially.	Children to the calculation using the short division scaffold. 123 $5 \ 6^{1}1^{1}5$

Long division using place value counters (these can be found on MathsBot.com).

2544 ÷ 12

1000s

1000s

100s

100s

10s

10s

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred. 02 122544 24

0

1s	After exchanging the hundred, we 12 have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.	$ \begin{array}{r} 0 & 2 & 1 \\ \hline 2544 \\ 24 \\ \hline 14 \\ 12 \\ \hline 2 \end{array} $
1s	After exchanging the 2 tens, we 12 have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder	$ \begin{array}{r} 0 2 1 2 \\ 2 2544 \\ 24 \\ 14 \\ 12 \\ 24 \\ 24 \\ 24 \\ 24 \end{array} $

Repeated subtraction can also be used. Children to use their knowledge of multiples to help with this.

